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The Increased need for
Software within NASA

Systems must support remote exploration
Systems must be more autonomous
Systems must do more complex tasks

When people think of space, they think of rocket 
plumes and the Space Shuttle, but the future of 
space is information technology…

Daniel S. Goldin, 
Previous NASA Administrator

No
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Hey Guys, this looks pretty good! 
I don’t see any bugs!

The balance/combat is between:
• being complete (catching all bugs) and 
• being able to scale (handle large programs). 
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ASE Group Program V&V History 1997-2003

1997 1998 1999 2000

Found 5 errors in the Remote Agent
using the SPIN model checker.
Program hand-translated to a model 
used by the SPIN model checker.

JPF 1
Model Checker that automatically
translates Java code to a model
used by the SPIN model checker.
Translates 80% of Java.

JPaX
Tool for monitoring temporal behavior 
and finding concurrency-errors 
(such as deadlocks and data-races) 
during execution of Java programs.
Applies also to C and C++ programs

JPF 2
Custom made model checker for 
Java programs. 
Complete coverage  of Java.

This talk

Complete Complete

Scales
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Dynamic Analysis
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What is Dynamic Analysis

Instrument program
Run instrumented program
Extract execution trace
Analyze execution trace
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PathExplorer

Running program

socket

Event stream

Observer
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Predictive
Analysis

PathExplorer – the Observer

Dispatcher

deadlock

datarace

temporal

paxmodules
module datarace =‘java pax.Datarace’;
module deadlock =‘java pax.Deadlock’;
module temporal =‘java pax.Temporal spec’;

end 

Event
stream

warning
…

warning
…

warning
…

…
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Looking for the Foot Prints
Instead of for the Bug Itself
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Deadlock Analysis
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Two Kinds of Deadlocks

Resource deadlocks
Communication deadlocks
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Resource Deadlocks

A resource deadlock can occur when 
two or more threads block each other 
in a cycle while trying to access 
synchronization locks (held by other 
threads) needed to continue their 
activities.
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Java Program with 
Resource Deadlock

T1:

synchronized(R1){
..
synchronized(R2){..}
..

}

T2:

synchronized(R2){
..
synchronized(R1){..}
..

}

Deadlock: if T1 takes R1 and then T2 takes R2
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Communication Deadlocks

Full

Full

A communication deadlock can 
occur when two or more threads 
block each other in a cycle while 
trying to communicate with each 
other and buffers are either full or 
empty.

We shall not consider communication deadlocks!

d d d d d

d d d d d
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Code Analysis

class Main{
Fork[] forks = new Fork[N];
..
for(int i=0;i<N;i++){

new Phisosopher(forks[i],forks[(i+1)%N];
};

}

Static analysis cannot find this problem due to the dynamic 
creation of forks and the ‘%’ operator (experiment with JLint).

Philosopher:
while(count<10){

synchronized(left){
synchronized(right){count++}

}
}

Model checking works for N=20, but if program is deadlock free
(introducing gate lock) N=3 is max using 3 minutes (JPF).
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Alternative:
Dynamic Analysis (Trace Analysis)

Execute instrumented version of program and 
extract “random” execution trace:

l(t1,r1) l(t1,r2) r(t2,x)l(t2,r2)w(t1,x)u(t1,r2) u(t1,r1) l(t2,r1) u(t2,r2)u(t2,r1)

T1:

long x;
synchronized(R1){

synchronized(R2){};
x = big1*big2;

}

T2:

synchronized(R2){
System.out.println(x);
synchronized(R1){};

}
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Model Checking Traces

Project trace δ on each thread, obtaining δ1 and δ2
Consider projections δ1 and δ2 as sequential 
programs
Model check  parallel composition of  δ1 and δ2

l(t1,r1) l(t1,r2) w(t1,x)u(t1,r2) u(t1,r1)

r(t2,x)l(t2,r2) l(t2,r1) u(t2,r2)u(t2,r1)

•Deadlocking philosophers: for N=47 deadlock found in 5 minutes 
•For deadlock freedeadlock free philosophers: 

•for N=3 verified correct in 38 seconds
•For N=4 out of memory (1.5 GB memory)

δ1

δ2
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Some Observations

We can regard each projected trace as a transition 
system – and the parallel composition of these, 
called the composed transition system.
We say that a trace is deadlock free if the 
composed transition system contains no deadlocks.

An execution trace can be regarded as an abstraction of
the program. Hence similarities with other work on 
model checking abstractions.
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Testability: a Desirable Property

Given a property  ϕ, find a property  ψ that is highly 
testable:

From verifying ψ on a single trace we extrapolate and conclude 
about ϕ on entire program. 

Definition (testable property in the ideal case) :
A property ψ is a testable property for ϕ if:

• If  �δ∈ P . δ satisfies ψ then P satisfies ϕ

• If �δ∈ P . δ does not satisfiy ψ then P does not satisfiy ϕ

Example:
ϕ = deadlock freedom
ψ = cycle freedom in a lock graph

In practice we can only obtain approximations to testable 
properties: extrapolation with high probability.
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Example

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

4 deadlock potentials
Only one is real

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

Guarded cycle

Thread segmented cycle

Singular cycle

Deadlock cycle!
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Execution Trace

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

l(T1,G)
l(T1,L1)
l(T1,L2)
u(T1,L2)
u(T1,L1)
s(T1,T3)
l(T2,G)
l(T2,L2)
l(T2,L1)
u(T2,L1)
u(T2,L2)
u(T2,G)
l(T3,L1)
l(T3,L2)
u(T3,L2)
u(T3,L1)
j(T1,T3)
l(T1,L2)
l(T1,L1)
u(T1,L1)
u(T1,L2)

Trace

Event format:

l(<thread>,<lock>) - lock
u(<thread>,<lock>) - unlock
s(<thread>,<thread>) - start
j(<thread>,<thread>) - join
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Classical Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

4 cycles =
4 deadlock potentials reported (Visual Threads).

1 real deadlock! (3 false positives)

T3: L1 -> L2

T2: L2 -> L1

Algorithm: build lock graph and detect cycles in graph.
An edge goes from X to Y if a thread holds X while locking Y.
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Guarded Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{}

T1,{G}

T1,{}

T2,{G}

1. Threads: must differ
2. Guard sets: must not overlap

Valid Cycles:

2 cycles =
2 deadlock potentials reported.

Potential 1 & 2

Algorithm: extend lock graph with labeled edges: 
which thread, and set of guard locks.
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Segmented Algorithm

T1:

sync(G){
sync(L1){

sync(L2){}
}

};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

T2:

sync(G){
sync(L2){

sync(L1){}
}

}

T3:

sync(L1){
sync(L2){}

}

L1 L2

T3,{},(6,6)

T1,{G},(2,2)

T1,{},(7,7)

T2,{G},(4,4)

Algorithm: extend labels with segmentation information. M:
new T1().start();
new T2().start();

0 3

4

7

6

5

1

2

M

T1

T2

T3

1. Threads: must differ
2. Guard sets: must not overlap
3. Segments: must be parallel

Valid Cycles:

One potential left, the real deadlock!
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Correctness

Theorem:

For every deadlocking trace in the composed
transition system, obtained by putting projected
traces in parallel, there is a valid cycle that 
reflects it.

For every valid cycle there is a deadlocking trace 
in the composed transition system.
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Data Race Analysis
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Data Races

A datarace can occur between a set of 2 threads T={T1,T2} if they access 
a shared variable V and there is a state of the execution where T1
can write to the variable and T2 can write to or read from the 
variable without using a shared lock.

T1 T2V
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Java Program with Data Race

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Data race: if T1 reads sum and then T2 reads sum 
where after the additions are made. Result is +100 or
+50, depending on who writes first, not +150
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Data Race Algorithm

Developed by Savage et al. (Compaq) and used in Visual Threads for 
Compaq platforms to work on C. Requires Compaq hardware to run. 
Here made platform independent and modified to work for Java.

T1:

synchronized(R1){
sum = sum + 100;

}

T2:

synchronized(R2){
sum = sum + 50;

}

Initially: Lockset = {}
T1 executes: Lockset = {R1}
T2 executes: Lockset = Lockset ∩ {R2} = {}
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Reducing False Positives
Associate Automaton with Variable

not used

exclusive

shared

shared
modified

wr

rd (new thread)

rd,wr (first thread)

rd

wr (new thread)

wr

rd,wr

= no action

= refinement

= also warnings
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High-Level
Data Race Analysis
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High-Level Data Races
An Example

class CoordinatePair{
int x = 0;
int y = 0;
int getX(){return x;}
int getY(){return y;}
void setX(int v){x = v;}
void setY(int v){y = v;}

}

synchronized(lock){
c.setX(1);
c.setY(2);

}

synchronized(lock){
my_x = c.getX();

}

synchronized(lock){
my_y = c.getY();

}

Thread 1 Thread 2

The two threads have inconsistent views
on the granularity of synchronization..
Thread 1 accesses x and y in one block.
Thread 2 accesses x and y in two blocks,

write x and y

read  old x

read  new y

inconsistent

Thread 1 Thread 2
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Low-Level versus High-Level
Data races

x

L1 L2 L2

xx y
y

Low-Level High-Level
For each variable: a lock set For each lock: a variable set (several)

y

L3
L1

L1 L2
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Higher Level Data Race in
Remote Agent

If(           & not ok(      ))
issueWarning()

update(       )

set(        )

Task

Database

Flag

Monitor
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Soundness & Completeness

False positive when:
One thread uses coarser locking that required due to 
efficiency.

False negatives when:
All threads use the same 

locking
Random execution trace does 

not expose problem

L x y L

x

y

L

x

y
L

x

y

L
x

y
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More Examples

View ConsistencyThread 2Thread 1

x y

x y x
y

x y

x y

x y x

x y x y x

x y x y
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View Consistency

View Consistency:

∀ threads t1 and t2 •
let m be a maximal view of t1,
let v1 and v2 be two views of t2,
let v1’ = m ∩ v1,
let v2’= m ∩ v2,
then v1’ ⊆ v2’ ∨ v2’ ⊆ v1’ .

All views overlapping with another thread’s maximal
View must be subsets of each other.
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Examples Explained

View ConsistencyThread 2Thread 1

x y

x y x
y

x y

x y

x y x

x y x y x

x y x y

⊆

⊆

⊆

{x}     {y}

{x}     {y}

{x} ⊆ {x,y}
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Temporal Logic Monitoring
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Specification Based
Monitoring

PathExplorer – the Observer

Dispatcher

datarace

deadlock

temporal

paxmodules
module datarace =‘java pax.Datarace’;
module deadlock =‘java pax.Deadlock’;
module temporal =‘java pax.Temporal spec’;

end 

Event
stream

warning
…

warning
…

warning
…

…
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Runtime Verification with
Java PathExplorer

always(A -> not C until B)

A B C B A C

observer
events

Translates into observer

Temporal logic facilitates
expression of requirements 
that relate a vehicle’s states 
at different time points.

Formalized temporal requirement

A
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Maude as a 
Specification Language

Specification and verification system
In the OBJ family

Algebraic specification
Signatures + equations

Mixfix notation
Easy to define syntax of new logics.

Fast rewriting
Efficient semantics for monitoring.
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Future Time Temporal Logic 
in Maude

Syntax – Propositional Calculus plus
o F (next)   F (always)   F (eventually)   F U F’ (until)

Executable Semantics – Rewriting
_{_} : Formula x Event -> Formula (“consume” event e)

F{e} is formula that should hold after processing e

p{e}           is the atomic predicate p true on e ?
(F op F’){e} F{e} op F’{e}
(o F){e}     F
( F){e}     F{e} ∧ ( F)
( F){e}   F{e} ∨ ( F)
(F U F’){e}  F’{e} ∨ (F{e} ∧ (F U F’))
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Example

fmod LTL is …

op _{_} : Formula Event -> Formula .

eq []X {E}  =  X {E} /\ []X .

eq <> X {E}  =  X {E} \/ <>X .

eq o X {E}  =  X .

eq X U Y {E}  =  Y{E} \/ (X {E} /\ (X U Y)) .

endfm .

P =[](green -> !red U yellow)

{green}

= (!red U yellow){green} /\ P

= (Yellow{green} \/ (!red{green} /\ !red U yellow)) /\ P

= (false \/ (true /\ !red U yellow)) /\ P

= !red U yellow /\ P

{green}

= (!red U yellow){red} /\ P

= (yellow{red} \/ (!red{red} /\ !red U yellow)) /\ P

= (false \/ (false /\ !red U yellow)

= false

= !red U yellow /\ !red U yellow /\P
= !red U yellow /\P

{yellow}

{red}
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Using “memo” to Generate
Automata Specialized to Trace

fmod LTL is
…
op _{_} : Formula Event -> Formula [memo] .
…

endfm .

P =[](green -> !red U yellow)

{green}

!red U yellow /\ P

{green}

false

{yellow}

{red}

[](green -> !red U yellow){green}
-> !red U yellow /\ P

….

Hash Table
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Code Instrumentation

Jtrek used for Java byte-code instrumentation:
Gives access to class files as abstract syntax trees
Allows to browse bytecode instructions and to insert new event 
transmitting instructions.
Instrumentation is automated guided by instrumentation scripts 
telling what to instrument.

Instrumentation package built on top of Jtrek:
Driven by instrumentation script, which is a set of 
instrumentation rules (condition,action), where

Conditions are predicates on the static structure of the program
Actions are indications of what kind of information we want to 
observe
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Generating FSM Observers

There are applications where
Little monitoring overhead is allowed (real time)
Few resources available for monitoring

Challenge: efficient and simple monitors!
Finite State Machine observers can be built from 
formulae before monitoring

Lower runtime overhead
• No inferences needed
• Only some atomic predicates need to be evaluated

Higher start time overhead
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Formula                                        (green → ¬ red U yellow)

State                               1                           2  

BTT         yellow ? 1 : green ? (red ? false : 2) : 1    yellow ? 1 : (red ? false : 2)

yellow

green

red

1

1

false 2

Y

Y

Y

N

N

N

yellow

red1

false 2

Y

Y

N

N

Monitoring Future Time Temporal Logic using Binary 
Transition Trees (BTT)
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Building a Minimal BTT_FSM

Idea
Do the rewrites for all possible values of predicates
Get a finite state machine

• Nodes are LTL formulae
• Optimize using a validity checker (F ↔ F’ : one state)
• Edges are propositions
• Assign numbers to states
• Replace edges by Binary Transition Trees

Exponential, but works fine in practice
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Use of BTT FSM Generation

Inline version of JPaX expands comments like

/* JPaX: after green comes yellow          
Atom red = tlc.state.getColor() == 1;
Atom green = tlc.state.getColor() == 2;
Atom yellow = tlc.state.getColor() == 3;

Formula : []( green -> ( ! red U yellow ));
*/

into code that throws an exception when formula is violated

try{
switch(bttFsmState) {

case -1: break;
case  1: bttFsmState = tlc.state.getColor() == 3 ? 1 : 

tlc.state.getColor() == 2 ?
tlc.state.getColor() == 1 ? 0 : 2 : 1; break;

case  2: bttFsmState = tlc.state.getColor() == 3 ? 1 :
tlc.state.getColor() == 1 ? 0 : 2; break;

}
if(bttFsmState == 0) throw new Exception("Prop. Failure");

} 
catch(Exception e){ ... };
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Past Time Temporal Logic

specification
P = start(p) -> [q,end(r|s));

end

F ::= true | false | Id 
| not F | F implies F | F and F | F or F | (F)
| [F,F) | start(F) | end(F)

implies

start

p

[_,_)

q end

|

sr

0

1

2

3

4 5

6

7 8

boolean pre[9];
boolean now[9];

now[2] = holds(p);
now[1] = now[2] && !pre[2];
now[4] = holds(q);
now[7] = holds(r);
now[8] = holds(s);
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[3] = (pre[3] || now[4]) 

&& !now[5];
now[0] = !now[1] || now[3];
if(now[0]==0)print(“error”);
pre = now;
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Result of Translation is the
“Formulae” Java Class

public class Formulae{
abstract class Formula{
protected String name;
protected boolean[] pre;
protected boolean[] now;
protected State state;

public Formula(String name,State state){
this.name = name; this.state = state;

}

public string getName(){return name;}

public abstract boolean evaluate();
}

private List formulae = new ArrayList();

…
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The “Formulae” Class

public void evaluate(){
Iterator it = formulae.iterator();
while(it.hasNext()){
Formula formula = (Formula)it.next();
if(!formula.evaluate())
System.out.println(“Property “ + formula.getName() + “ violat

};
}

class Formula_P extends Formula{
…

}

public Formulae(State state){
formulae.add(new Formula_P(state));

}
}
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The “Formulae” Java Class

class Formula_P extends Formula{
public boolean evaluate(){
now[2] = state.holds(“p”);
now[1] = now[2] && !pre[2];
now[4] = state.holds(“q”);
now[7] = state.holds(“r”);
now[8] = state.holds(“s”);
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[3] = (pre[3] || now[4]) && !now[5];
now[0] = !now[1] || now[3];
System.arraycopy(now,0,pre,0,9);
return now[0];

}

public Formula_P(State state){
super(“P”,state);
pre = new boolean[9];
now = new boolean[9];

}
}
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Test Case Generation and 
Dynamic Analysis
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Automated Test Environment for
the Planetary Rover K9

K9
executes plan

Plan
Generation

Property 
Generation

Trace 
Analysis

Program 
Instrumentation

Simulator

trace

propertiesplan

plan



Page  58

Plan Grammar

Plan          → Node
Node        → Block | Task
Block      → (block NodeAttr

:node-list (NodeList))
NodeList → Node NodeList | ε
Task → (task NodeAttr

:action Symbol
[:fail] 
[:duration DurationTime])

NodeAttr → :id Symbol
[:start-condition Condition] 
[:end-condition Condition] 
[:continue-on-failure]

Condition  → (time StartTime EndTime)
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Example of Plan

(block :id plan
:continue-on-failure
:node-list (
(task :id drive1

:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task :id drive2

:end-condition (time +10 +16)
:action BaseMove2
:fail

)
) )

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail
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Plan Generation

class UniversalPlanner { …
static int nNodes = 0;
static int tRange = 10;

static void Plan(int nn, int tr) {
nNodes = nn; tRange = tr;
Node plan = UniversalNode();
print(plan);
assert(false);

}

static Node UniversalNode() {
if(nNodes == 0) return null;
if( Verify.chooseBool() ) return null;
if( Verify.chooseBool() ) 

return UniversalTask();
return UniversalBlock();

}

static NodeAttr UniversalNodeAttr() { … }

static Node UniversalTask() {
NodeAttr na = UniversalNodeAttr();
Symbol action = new Symbol();
boolean fail = Verify.randomBool();
int duration = Verify.random(tRange);
Task t = new Task(na, action, fail, duration);
nNodes--; 
return t;

}
static Node UniversalBlock() {

NodeAttr na = UniversalNodeAttr(); 
nNodes--;
ListOfNodes l = new ListOfNodes();
for(Node n=UniversalNode(); n!=null; n=UniversalNode()) 

l.addNode(n);
Block b = new Block(na,l);
return b;

}
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Plan Properties

◊ start(plan)

□ (start(plan) → ◊1,5 start(drive1))

□ (start(drive1)→( ◊1,30success(drive1) ∨ ◊fail(drive1)))

□ (success(drive1) → ◊ start(drive2))

□ (end(drive2) → ◊ success(plan))

◊ success(drive1)

◊ fail(drive2)

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail
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“Demo” of K9-Explorer
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Workshop

Third International Workshop on

Runtime Verification

CAV’03
July 13, 2003

Boulder, Colorado
USA

RV’03

http://www.cis.upenn.edu/rv2003/
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Workshop

Fourth International Workshop on

Runtime Verification

ETAPS’04
April 3-4, 2004

Barcelona
Spain

RV’04
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Aspect Oriented Programming
for Testing and Debugging 

Robert E. Filman Klaus Havelund
RIACS Kestrel Technology

rfilman@mail.arc.nasa.gov havelund@email.arc.nasa.gov

NASA Ames Research Center
Moffett Field, CA 94035 U.S.A.
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Static and Dynamic Quantification

In earlier papers, distinction between
Static quantification: discernable from the syntactic structure 
of the specimen program

• E.g, calls

Dynamic quantification: matching events that happen in the 
course of program execution.

• E.g., cflow

Coming to the belief that almost all interesting “events” are 
dynamic, and that static quantification merely refers to those 
events that can be simply inferred from the static structure 
of the program. 
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Events and Event Loci

Event Syntactic locus
Accessing the value of a variable or 
field

References to that variable

Modifying the value of a variable or 
field

Assignments to that variable

Invoking a subprogram Subprogram calls
Cycling through a loop Loop statements
Branching on a conditional The conditional statement
Initializing an instance The constructors for that object
Throwing an exception Throw statements
Catching an exception Catch statements
Waiting on a lock Wait and synchronize statements
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More Events and Loci

Event Syntactic locus
Resuming after a lock wait Other's notify and end of 

synchronizations
Testing a predicate on several fields Every modification of any of those 

fields
Changing a value on the path to 
another

Control and data flow analysis over 
statements (slices)

Swapping the running thread Not reliably accessible, but 
atomization may be possible

Being below on the stack Subprogram calls
Freeing storage Not reliably accessible, but can try 

using built-in primitives
Throwing an error Not reliably accessible; could 

happen anywhere
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Research regime

Define a language of events and actions on those 
events.
Determine how each event is reflected (or can be 
made visible) in source code.

Its shadow

Create a system to transform programs with 
respect to these events and actions.



Page  70

Transformational Alternatives

For Java, can transform at
The source-code level
The byte-code level
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Architectural View

Source Java
code

Source Java
code

Event-action
descriptions

Event-action
descriptions

Event-
Edit 

compilation

TransformTransform

AST

Target Java
code

Target Java
code

Parse PrettyPrint
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Applications 

Applying AOP to debugging and validating 
concurrent programs.
Applying AOP to monitor programs during operation, 
so that actions can be initiated in case bad things 
happen.
Applying AOP as a general programming paradigm.
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Program Debugging

Detect multi-threading problems caused by access 
to shared resources by competing threads.
Validate trace executions against user 
requirements.
Validate multithreaded programs by exploring 
schedule interleavings.
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Detect 
Multi-threading Problems

Deadlocks: Observe in what order locks are taken 
and released and infer potential deadlocks from 
cycles.
Data Races: Observe what locks threads own when 
they access variables and infer potential data races 
from empty overlaps.
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Applying AOP

aspect DeadlockDetection{
when synchronize(obj){

Thread curr = Thread.currentThread();
Set locks = Threads.getLocks(curr);
Graph.addEdges(locks,obj);
Graph.findCycles();
Threads.addLock(curr,obj);

}
when endof synchronize(obj){

Threads.remove(curr,obj);
}

}
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Applying AOP

aspect DataraceDetection{
when synchronize(obj){

Thread curr = Thread.currentThread();
Threads.addLock(curr,obj);

}
when endof synchronize(obj){

Thread curr = Thread.currentThread();
Threads.remove(curr,obj);

}
when accessto(var,isWrite){

Thread curr = Thread.currentThread();
Statemachine.update(curr,var,isWrite);
Statemachine.checkEmptyness(var);

}
}
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Validating Execution Traces Against 
User Requirements

aspect CheckRequirements{
when(CLOSED and not previously DO_CLOSE){

Report(“System closed by itself”);
}
whennot(DO_CLOSE implies 

eventually(20)CLOSED){
Report(“System did not close”);

}
}

CloseSystem();  // repair
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Explore Scheduling

Simple example: assume that all variable accesses are 
protected with locks.
Insert a call of a randomized yield statement in front of all 
synchronization statements and calls of synchronized 
methods.
This will cause the scheduler to randomly make a context 
switch whenever a lock is taken. This may be used, for 
example, to reveal deadlocks.



Page  79

An Evaluation
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FSW Verification Tool Comparison

10 Oct 2002

Peter R. Glück
Jet Propulsion Laboratory
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User Impressions
Tool JPAX JPF Polyspace DBRover
Impressions - A wonderful tool! 

One of the most 
helpful tools seen in a 
long time. 
- All of the problems 
found were the type 
that would have taken 
months to find 
because they were 
intermittent. 
- Found stuff we didn't 
know about tha 
timproved the 
robustness of the 
application (with less 
than 4 hours total time 
invested).

- Easy to create a 
dumb, non-
deterministic 
environment, but it 
may be harder to filter 
out unrealistic 
scenarios in a real 
project.
- You have to 
manually put in atomic 
regions, which may 
not be trival in a real, 
multi-threaded 
application.
- It takes some amount
of manual 
specification, which 
should be done at the 
requirements stage.

- The main hurdle is 
setting it up. The rest is
pretty nice.
- Liked the GUI and 
the display capabilities.
- Color coding and 
filtering are good.
- Very easy to use 
once configured.

- If you can formally 
specify a FSW 
property in LTL and 
are able to inject it into 
the application code, 
then it excels as a very
powerful run-time 
assert statement.
- The simulator was 
essential. Without it it 
would have been 
much harder to 
validate the 
correctness properties.
This was a time-saver.
- It is nice that it 
monitors multiple 
correctness properties 
simultaneously.


